Towards a Process Model for Evolutionary
Software Development in Reasearch
Environment: Failure of Known Software
Development Methods

Alexander Gran
alexander.gran@ipt.fraunhofer.de
Lothar Glasmacher
lothar.glasmacher@ipt.fraunhofer.de
Fritz Klocke
fritz.klocke@ipt.fraunhofer.de

Fraunhofer Institute for Production Technology IPT
January 2008

Abstract

Developing software in the research environment is not like developing or-
dinary business software. It has several uncommon requirements that render
all known software development process models inapplicable. We will present
the requirements in the research environment and work out the shortcomings
of all commonly used process models.

1 Introduction

When developing software in the research environment, the software developer is
providing a service to other research scientists. It may however aditionally be pos-
sible that the developed software is to be sold to a third party, being a research
partner or industry. You will find this combination at scientific research institu-
tions, like the German Max-Planck Gesellschaft or the Fraunhofer-Gesellschaft
but also in research facilities of the industry. In most cases these are located close
to universities.

The developed software is often used to simulate parts of the reality or to
optimize processes that are already in place but not completely understood. It is
however inevitable that the details that should be simulated are not yet known.
The reason why such software is developed actually is to understand and evolve
these details. When optimizing processes the situation is quite similar: You may
have a rough goal (improve processing time of process XY), but its the purpose

of research to enlighten and develop the way to this goal. The results of the
software help to understand the environment and as such make simulation and
optimization possible in the first place Due to this, the results of the software -
which are already produced during its creation of course - allow the more precise
and extensive specification of the software. This vicious circle has to be supported
by the software development process (SDP).

The lifecycle of the software is to be planned uncommon, too. As there is no
concrete final target for the development that could be reached (the scientists are
just trying to understand something), there is no point that marks the end of the
lifecycle. The research scientists permanently improve and change, maybe even
overthrow, their model of the reality. As such the software needs to be improved,
changed and perhaps overthrown permanently. It will never reach something like
a maintenance phase.

However it may be required, especially for optimization software, that a release
is sold to a partner or customer. This may need a specific amount of planning and
the ability to calculate a price for additional features.

The software developers in research institutes differ quite heavily from full time
professionals in the software industry. As research institutes are often connected
to universities, the employees may be students too, working as student trainees in
industry or student assistants in the university. These are employed on part time
basis and are not permanently available. They may have severe fluctuations in
the available weekly working time depending on exams etc. Their level of knowl-
edge changes a lot more rapidly and unpredictable than with normal employees
that take further training every now and then. Furthermore their experience in
developing software is very limited, and they will stay only for a few years on
the project, whereas the softwares life may be much longer. Having a university
at hand may create the possibility to get larger parts of the software being con-
structed by a student as master or diploma thesis. The software development
process needs to support the integration of such large and concluded blocks.

The depicted research has been funded by the German Research Foundation
DFG as part of the Cluster of Excellence "Integrative Production Technology for
High-Wage Countries".

2 Requirements for a process model for research envi-
ronment

This is a summary of the requirements for a process model to adequately support
software development in research environment:

First of all the extremely fluctuating requirements and evolving specifications
must be dealt with. Changing of basically all specifications within a short time-
frame must have no horrible effects on software quality. The SDP has to have a
lifecycle that does not end, but allows permanent improvements of the software.
Furthermore it has to support plaiting larger modules developed independently,

and allow defining a release to be emitted to a third party. The planning and
costing of this release must be possible. It may consider the creation of a spin-off
to further develop the software when it hits a larger market. The structure of
the employees, i.e. mostly part time staff from university has to be taken into
account. Moreover the structures of a large research institution or university may
be quite resistant to change.

3 Shortcomings of Known Process Models

Not only software as such, but also the software development processes are per-
manently being improved. Due to changes in the limitations in hardware, users
and developers new software development processes are necessary all the time.
Figure[1] according to [6], has an overview of the software development processes
being dealt within this paper. Explaining the details of all process is not within the
scope of this paper. Refer to [1] and [3] to get an nice overview.

Hacker, XP Adaptive SW Risk driven Plan driven Mikro
unscheduled Development Milestones Milestones Management
FDD Scrum Spiralmodel RUP Waterfall
Agile Methods V-Modell (XT)

® | | 1 Py

| | |

MMI
- S >

Figure 1: Overview of the most common software development processes

Unscheduled software development has a special position among the software
development processes. A process model basically doesn’t exist, no phases are
being defined and development is just started without initial planning. This seems
to be out of all reason at first, however there is still a considerably large amount of
software being developed without a SDP. As there is no planning, scientific usable
papers are rare about the success rate. However we surely can assume that this
approach can be successful for small projects, particularly if only one developer is
involved. If multiple developers are to work for a longer period, planning cannot
be neglected. Obviously unscheduled development cannot be used in research
environment, especially because the software developers are quite inexperienced.
As we will see, even the more complex process models are insufficient, too.

Software development process can roughly be subdivided into two major
groups: Agile and non agile approaches. Common non agile ones are Waterfall-
and Spiralmodel as lightweight processes and V-Modell XT®(V—I\/IodeII is a regis-
tered trademark of the Federal Republic of Germany) and Rational Unified Process
as heavyweight, toolsupported processes. Most prominent agile methods are eX-
treme Programming, Feature Driven Development, User Centered Design, Scrum
and Crystal.

The basic assumption of agile approaches of software development - change
happens and change happens often - is already way better suited than rigid classi-
cal approaches. Agile methods assume that some 60 percent of the requirements
change in the lifetime, whereas the old ones assume 10 percent [24]. This is still
not enough for the research environment, as largely all requirements may change
multiple times.

The ancient Waterfall Model was developed 1970 by Royce [20] to get away
from the chaotic and unscheduled development that dominated before. It's def-
inition of phases in the development process and the strict transition rules were
immediately after its development regarded as insufficient. It is mainly of theoret-
ical interest and seldom used in real world projects. Royce used it to show that
a more dynamic approach is needed. As such it just does not fulfill any of the
requirements of a SDP in research environment. It cannot really deal with larger
changes, as it's only possible to revert by one phase at once. The lifecycle ends in
a maintenance phase instead of supporting permanent improvements. External
modules are unsupported, at least it is theoretical possible to plan releases using a
waterfall approach. Reality however shows that this planning doesn’t really work
out. Employees aren't considered at all in the waterfall model. Due to its simplicity
there will be no problems adapting it.

The Spiral Model by Boehm [4] is a more iterative, generic process model. It's
two-dimensional approach supports planning of cost and progress. The iterative
approach tries to reduce risk due to changes in requirements and uncertainties.
However radical changes in the requirements are not expected, and the life cycle
ends in a final software. External modules could be plait after each iteration, how-
ever planning realeases is not supported: On the one hand the iteration process
is to rigid for this to work, on the other hand the requirements for the results of
an iteration are to vague.

The Rational Unified Process RUP is a heavyweight SDP and a product devel-
oped and distributed by Rational (by now owned by IBM Corporation). The basic
principle, the Unified Process, is also being used by the Open Unified Process
OpenUP, Agile Unified Process, Enterprise Unified Process and Essential Unified
Process. Inspecting these is out of the scope of this paper. RUP is extremely
generic and needs a detailed tailoring to the specific project. This is ideally done
by a RUP Process Expert, who additionally trains the developers. This is problem-
atic in research environment, as developers may change frequently and the expert
has to be paid, as ordinary developers tend to have not enough experience for
his job. Furthermore the training of the developers is needed even if they are
experienced with other techniques [15], only with enough time and training good
results are to be expected [17]. Both experienced developers and much time is not
expected with e.g. part time students. RUP requires quite a bit of documentation,
which results in an unnecessary overhead if things change a lot. The permanent
prototyping allows to give a release to a customer, cost planning of a release is
possible due to RUPs tool support. The lifecycle is problematic as for each new
set of requirements a new iteration is necessary, the iterations within the phases
allow only smaller changes. The iterations are however quite long, so this may
result in waste of time.

The V-Modell is a - at least in Germany - very popular SDP, developed by the
Koordinierungs- und Beratungsstelle der Bundesregierung fiir Informationstech-
nik in der Bundesverwaltung (Federal Government Co-ordination and Advisory
Agency for IT in the Federal Administration) based upon an idea of Barry Boehm
[5]. Its XT (eXtreme Tailoring) version is an approach to become more agile, and
has the product and not the process in the center of interest. The V-Modell de-
fines work packages to be done, but does not force the user to specify their
chronology. The tailoring furthermore allows to skip several parts not necessary
for smaller projects. As the V-Modell distinguishes between principal and agent
projects, the activities of one product are split between the two parties on two
projects. This is just unnecessary when both are working closely together and
introduces superfluous overhead. As the V-Modell does not force an order of
the workpackages, every life cycle is possible. However no lifecyle gets specific
support. Having extra releases is not supported, as is plaiting of external work.
As the main phases are essentially the same as with waterfall based models it is
unable to deal with heavily fluctuating requirements. It has a high initial adaption
effort, that is problematic for part time employees as it is with RUP: The initial
documentation of the V-Modell are some 600 DIN A4 pages.

Extreme Programming (XP) is the most prominent agile SDP. Developed in
1999 by Beck [2] at Chrysler, it has gained much attention in the last years. It
is build for small teams and changing requirements. And is constructed as a col-
lection of already known Best Practices, that are to be used extremely. It features
five major values: Communication, Simplicity, Feedback, Courage and Respect.
Listing all the best practices here is out of scope, refert to [8] for a detailed de-
scription. We know that pair programming produces better code and does not
consume that much more time [25], but students tend to have problems using
it [14]. Furthermore it is really problematic to have Pair Programming and daily
Stand-Up Meetings with part time employees. It requires quite a bit of synchro-
nization overhead if its at all possible to get everyone together. XP relies on these
two practices to empower the communication, it's problematic if they are not
used, as XP doesn’t use further approaches to transport knowledge. It tries to
produce no documentation at all. This will surely result in trouble when employ-
ees change and their knowledge has to be transmitted. The consistent speed of
development required by XP is hard to keep if the weekly availability of the stu-
dents changes due to exams etc. Additionally planned releases can result in a
higher amount of work in other weeks. Release planning and costing is not really
considered by XP. The small iterations allow a permanent controll of the confor-
mance to the requirements and the requirements self. XP relies heavily on testing,
but it may be hard to develop test cases and desired values if no one really under-
stands the area of interest. The Best Practice On-Site Customer is easy to use as
the research scientist are more or less permanently available.

As the name suggests Feature Driven Developement (FDD) has the feature in
the center of interest. A feature is defined as “The features are small ‘useful in
the eyes of the client’ results” [18] [11]. Additionally no feature is allowed to
require more than two weeks of development time. If its more complex, it needs
to be split. After each implementation of a feature, the software must be in a

functional state. That makes releasing it simple, but there is no planning which
features are included in a release. It may be problematic to include larger chunks
of external work in a two week timeframe, especially as you don’t have some
40 working hours per developer available with part time employees. If the two
week limit is risen, FDD doesn’t work that well any more. FDD demands the
developers to understand the details of the field of activity right at the beginning
of the project. This won't work in the research environment, as not even the
specialist in this area, the research scientists, have a complete understanding of
the material. Adaption of FDD is a simple process, it is enough if only 20 percent
of the developers are used to it [7].

Adaptive Software Development (ASD) is the SDP introduced and used by
Highsmith in 2000 [12]. It tries to focus on fast changing requirements. Like
FDD and XP, its a bundling of Best Practices to a new SDP. To be generic no
rules are enforced, everything can be omitted. Highsmith hopes for a good team
to make these decisions carefully. This is often criticized [9] [19], and extremely
problematic for new developers: They may accidentally fall back to unscheduled,
chaotic development. Additionally the ASD main document [13] is way to long
for an introduction, and contains bulks of unimportant passages [10].

Scrum is a lightweight, iterative and adaptive SDP [21]. There are extremely
positive reports of scrums success with several hundred percent of improvements
in productivity [24][22]23][16]. Scrums fixed iteration are hard to keep, as the de-
velopers are working on different complex parts that won't finish simultaneously.
Planning releases is possible with the concept of Sprints (Scrums name for the
iterations). Progress monitoring with a Burn Down Chart will help, it is however
not trivial to visualize projects progress when the amount of tasks is permanently
increasing. Self organizational teams are a challenging demand as they are in
ASD, because the team members are generally inexperienced. Dealing with im-
pediments won't be trivial, too. Larger research institutes or even universities tend
to have very inflexible structures. A very promising aspect is Scrums lifecycle. It
does not really end, this requirement is only achieved by Scrum and ASD. Scrum
is a very generic model and needs a more detailed one (XP is often used) for the
details of the development.

4 Conclusions

As worked out in this paper, no known SDP is able to fullfill the requirements of
software development in the research environment. Table 2| gives an overview
of the fulfillment. A new SDP is needed to fill this gap and make developing
software more planned. Currently most research facilities developing software
use unscheduled development, that is perhaps not even the worst decision, but
definitely not an ideal situation.

o
c
g

%]

o o~ o

S o o 3

g U 2 v 5
[CRE—N - 9 -
= O © 9] e D
(@) (O] (@) [>] el
£ = £ g 2 ©v 2
D o € ¥ £ o U
c c c) & v} -]
® 5 SO L 9] % 3
S € & © GEJ T w
[} [} o v
S5 8 5 = g %
st s 3528
d 2z & & & S £
Unscheduled development - 0 - 0 4+ ++ O
Waterfall model —- -+ 0 + ++
Spiral model o - - - o0 o

Rational Unified Process -0 4+ -
V-Modell XT -0+ - - - 4+
eXtreme Programming + 0o - 0 - - -
Feature Driven Development o + - 0o + + -
Adaptive Software Development + + o o - - -
Scrum O ++ + o0 - - -
Evolutionary Development ++ 0 - - + + -

Figure 2: Overview of fulfillment of requirements.

References

(1]

(2]

(3]

(4]

(5]

P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta. Agile Software Devel-
opment Methods: Review and Analysis. VTT Publications, 2002.

K. Beck. Extreme Programming Explained. Addison-Wesley Professional,
1999.

D.M. Berry. The Inevitable Pain of Software Development, Including of Ex-
treme Programming, Caused by Requirements Volatility. In Radlcal Innova-
tions of Software and Systems Engineering in the Future, Canada, 2002.
University of Waterloo.

B. W. Boehm. A spiral model of software development and enhancement.
In IEEE Computer, volume 21, pages 61-72. IEEE Computer Society Press Los
Alamitos, CA, USA, 1988.

B.W. Boehm. Guidelines for Verifying and Validating Software Requirements
and Design Specifications. In European Conference on Applied Information
Technology of the International Federation for Information Processing, vol-
ume 79, pages 711-719, London, 1979. North Holland Publishing.

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

B.W. Boehm. Get ready for agile methods, with care. [EEE Computer,
35(1):64-69, 2002.

J De Luca. What percentage of people are required to be experienced?,
2004. Von http://www.featuredrivendevelopment.com/node/635 be-
sucht am 12.12.2007.

R. Dornberger and T. Habegger. Extreme Programming: Eine Ubersicht
und Bewertung, 2004. Diskussion Paper, Fachhochschule Solothurn Nord-
westschweiz.

C. Eberle. Adaptive Software Development. Technical report, Institut fur
Informatik, Universitat Zrich, 2003. Seminar: Agile vs. klassische Methoden
der Software-Entwicklung.

C. Eberle. Adaptive Software Development, 2003. Institut fir Informatik,
Universitat Zarich, Seminar: Agile vs. klassische Methoden der Software-
Entwicklung, Seminar Foliensatz.

D. Gyger. Feature-Driven Development. Technical report, Institut fur Infor-
matik, Universitat Zurich, 2003. Seminar: Agile vs. klassische Methoden der
Software-Entwicklung.

J. A. Highsmith. Adaptive software development: a collaborative approach
to managing complex systems. Dorset House Publishing Co., Inc., New York,
NY, USA, 2000.

J.A. Highsmith and J. Highsmith. Agile Software Development Ecosystems.
Addison-Wesley Professional, 2002.

J. Karn, T. Cowling, S.L. Syed-Abdullah, and M. Holocombe. Adjusting to XP:
Observational studies of inexperienced developers. In LNCS 3092: Extreme
Programming and Agile Processes in Software Engineering, volume 5, pages
222-225. Springer, 2004.

S. Madsen and K. Kautz. Applying System Development Methods in Prac-
tice — The RUP Example. Information Systems Development: Advances in
Methodologies, Components and Management, pages 267-278, 2002.

C. Mann and F. Maurer. A Case Study on the Impact of Scrum on Overtime
and Customer Satisfaction. In Proceedings of the Agile Development Con-
ference, pages 70-79. IEEE Computer Society Press Los Alamitos, CA, USA,
2005.

R. Motschnig-Pitrik. Employing the Unified Process for Developing a Web-
Based Application-A Case-Study. In Practical Aspects of Knowledge Man-
agement: 4th International Conference, PAKM, Vienna, Austria, December
2002. Springer.

http://www.featuredrivendevelopment.com/node/635

[18] Coad P, Lefebvre E., and De Luca J. Java Modeling in Color with UML:
Enterprise Components and Process. Prentice Hall, 1999.

[19] D. Riehle. A comparison of the value systems of Adaptive Software Develop-
ment and Extreme Programming: How methodologies may learn from each
other. In Extreme Programming Explained, pages 35-50. Addison-Wesley,
Boston, USA, 2001.

[20] W. Royce. Managing the Development of Complex Software Systems: Con-
cepts and Techniques. In 9th international conference on Software Engineer-
ing, Monterey, California, United States, 1970. IEEE Computer Society Press
Los Alamitos, CA, USA.

[21] K. Schwaber and M. Beedle. Agile Software Development with Scrum. Pren-
tice Hall PTR Upper Saddle River, NJ, USA, 2001.

[22] J. Sutherland. Agile Can Scale: Inventing and Reinventing SCRUM in Five
Companies. Cutter IT Journal, 14(12):5-11, 2001.

[23] J. Sutherland. Future of Scrum: Parallel Pipelining of Sprints in Complex
Projects. Agile 2005 Conference, 2005.

[24] J. Sutherland. Scrum Tuning: Lessons learned from Scrum implementation
at Google, 2006. Google Tech Talks, Video at http://video.google.com/
videoplay?docid=8795214308797356840.

[25] L. Williams, RR Kessler, W. Cunningham, and R. Jeffries. Strengthening the
case for pair programming. /EEE Software, 17(4):19-25, 2000.

http://video.google.com/videoplay?docid=8795214308797356840
http://video.google.com/videoplay?docid=8795214308797356840

	1 Introduction
	2 Requirements for a process model for research environment
	3 Shortcomings of Known Process Models
	4 Conclusions

